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Preliminary Remarks

This report can be said to have two parts. The first part is an

elucidation of some notions and principles assembled by the senior writer to

expedite the calculation of the lag function.

The second part consists of detailed instructions on how to program the

concepts presented in the first part. It was written by the senior writer

with a view to expediting the understanding of an unknown program writer of

unknown capacities. As a consequence, it is perhaps too elementary in

character to appear here. However, an instructional precept of some merit is

that it is better to over- rather than under-simplify. Time loss to the

knowledgeable should be negligible if scanning is used judiciously.

Background 'laterial

The term "lag function" refers to a complex function of k, which when

written out in full is [11*

B(k) - u0 2k L(2k) + F1 e 2 k  at I dq

002k I~ i 2 1
+ f - ejk d t J- L 2_ e jk' dq~

0

The development of algorithms for computing the double integrals within the

braces is the problem of interest here.

*Numbers in brackets designate references at end of paper.
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The j in the exponential function is the imaginary unit and, since

x+iy x x
e = e cos y + i e sin y

one has

2jk (q2-t 2 ) 2 2 '2 2

e = cos 2k(q2 _ t ) + i sin 2k(q - t

= cos 2kq
2 cos 2kt 2 + sin 2kq

2 sin 2kt
2

ii k 2  
2t 2k 2  2!

i[sin 2kq 2 cos 2kt
2  cos 2kq sin 2kt 21

Complex arithmetric is ruled out of the calculation in order to preserve

desirable attributes of the expanded form of e2jk~q2_ t 2) so that the two

integrals become eight integrals with each integrand containing a

trigonometric product as a factor.

Let the q-axis be vertical and the t-axis horizontal. Then each of the

products will be seen to vanish on a set of horizontal lines and a set of

vertical lines that subdivide the two areas of integration, infinite strips

bounded by q = 0 and q = 1, into rectangles in which the trigonometric factor,

moving either horizontally or vertically, alternates in sign. As a

consequence, if the intcgrals are considered as composed of the sum of the

integrals on the rectangles, then each double integral is equivalent to the

sum of the sums of a finite set of alternating series infinite in the t-

direction. It follows that, if each integral is evaluated by the rectangles

in a row, row by row, the question of "far enough" becomes the question of

far enough for the infinite series. Since the algebraic component in the

integrand of each integral does aot chane sign in the area of intosrat ion,

the series are strictly alternating and so the far-enousgh question is easily

answered.
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The problem of evaluating the lag function thus reduces to evaluating a

number of double integrals, each with an integrand well behaved in the

rectangle of definition. Evaluating a multiple integral by iteration, 6 has

a cyclical character. Algorithms with cyclical properties tend, in program

form, to be relatively simple, which suggests that iteration is the method of

choice. To write a program in iterated form for a multiple integral, one

first chooses a one-dimensional quadrature. This quadrature 's then expanded

to two (or more) dimensions by writing its quantities, except for an obvious

few, with one additional independent variable, the additional variable

indicating a level of integration in the iteration.

Controlling Error in Numerical Integration

As anyone at all experienced in the art of computing well knows, a prime

difficulty in the computing of tables is the problem of keeping the inciAence

of unacceptable errors sufficiently small, for errors seem to creep in with 'n

inevitability that sometimes seems to suggest the guidance of a malign hand.

The true cause, of course, is the many points of possible entry, ranging from

faulty computing procedures to a simple inversion of digits in those inputs

and outputs handled by a human hand. The best of all checks, one seldom

available, is the existence of a relationship between the final outputs which

is known to hold. Unfortunately, no such check seems to exist for the final

outputs of the lag function except the one always possible for results in

tabular form, namely, finite differencing. The values given for the lag

function were subjected to this test, although the test's efficacy was
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diminished some by the necessity of using mostLy divided differences rather

than ordinary. Divided differences tend not to indicate a faulty entry as

precisely as ordinary differences do.

To make up for the lack of a dependable final check, considerable care

was taken to ensure that the accuracy of each of the individual numerical

integrations was good to three, if not four, significant figures. in general,

there is no means of estimating an error in an evaluation by a particular

quadrature formula other than comparing it with another evaluation using

another quadrature differing in some significant respect. Some comparisons,

however, do not always give reliable estimates because of a cancellation of

errors.

A favored procedure for numerical evaluation of a definite integral

begins by dividing the interval of integration into subintervals. The

subdividing is likely to be guided to some degree by the perceived character

of the integrand and by the choice of the quadrature formula which is to be

used in the subintervals. The chosen quadrature obtains from the set of

subintervals, a set of subintegrals which when summed is taken as a first

approximation. A second approximation is then formed by using The same

quadrature on the set of subintervals that come from halving the lengths of

the subintervals in the first set. The two evaluations are compared by

taking their difference. If the difference is sufficiently small, the

second approximation is then accepted as final.

Suppose the quadrature chosen is one of the Newton-Cotes kind, say,

Simpson's rule. Consider the subapproximation obtained on one suhinterval of

the first set. It can be written in the form



-8- 27 March 1981
GHP: SJG: Ihz

(y + 4 Y2 + Y4)

where h is the interval length and y( and y4 are ordinates at its end points

and y.? at its midpoint. The interval length for the matching two subintervals

of the second set is h/2 and their quadrature formula becomes

11-2 Y 4y[ + 2y 2  + 4y + y )72(Y + I - + + v4)

The difference between the two subresults will be seen as h multiplied into

a fourth order finite difference: hA 4y/12.

That the difference between the two quadratures is found to be a constant

multiple of a fourth order finite difference is not entirely happenstance.

For, as will be shown, the aifference between any two quadratures on the same

interval is always a linear combination of finite differences of the order of

the lower of the two quadratures. In the case just considered, both

quadratures are of the fourth order, and accordingly, their difference must be

a linear combination of fourth order finite differences, which it is, though

it consists of only one term.

A more interesting example is had in the difference between Simpson's

rule and the four term Newton-Cotes formula:

'0 3Y + 3y, + Y3/ 1

To have the seven abscissas of the two formuulas fall evenly in a common

interval, it is necessary to subdivide the interval (0,h) into six equal

parts. The seven abscissas are then -,iven by the relation

xk kh/b, k = 0,1,2 .... 6

It follows that Simpson's rule takes the form
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h(y 0 + 4 Y3 + Y6)/6

the four term formula, the form

h ,v + 3v, + 3 4 y, /3

and the difference may be written as

h"y 6 - 9 y 4 + 16 y3 -9Y 2 + y0 )/48

The parenthetical quantity with Y5 ind yl, added and subtracted, is

equivalent to

- + v 5 -Y4 - Y3- Y3 - Y2 + -Y - v - Y

or, in terms of first order finite differences, to

~v+y 8AV +3 %y.9 - Ay1 -yAY 5 + AY 4 - .3 +gY Y ~

This conversion of i linear combination of finite differences of order zero

to one of the first order is accomplished by grouping. Additional groupings,

three in nunber, reduce the initial linear combination to one of the fourth

order*: 1%4 2 + A4 yI + A4YO

*The sale rsult can be obtained iore easily by a parallel to synthetic

division. Consider the following array which is like that of synthetic

divi ;ion.

1 0 -9 16 -9 1) 1 11

1 1 -8 3 -1 -t

I -8 8 -1 -1 1i

1 2 -6 2 1

1 2 -6 2 1 1
1 3 -3 -1

1 3 -3 -1 1i

1 4 1

1 4 1
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The first course of numbers in this display are the numerical

coefficients in the linear combination of finite differences of order zero;

the second, the coefficients in the linear --ombination of first order

differences and so on, course by course. The last fully interpreted is

4 4'W'Y2+ 4A~y Y4 +

a linear combination of the kind designated by the principle stated above.

The full expression for the difference between the two original quadratures

becomes

4A4V + A Yl 
+  

y/48

The principle -Tives only the order of the finite differences in the

finl linear :on inations. It does not give the coefficients or the total

number Jf the differences. The latter quantity, however, can he deduced

from the total nunber of abscissas in the difference of the quadratures.

The number of abscissas involved in the case using Simpson's rule is five.

On five points only one fourth order finite difference is possible. In

the second c:{se with the addition of abscissas x2 and x4 , the total is

seven. Without goinj through the whole procedure, one knows that only

three finite fourth order differences are possible. So all that is

Learned from the full procedure is that the multipliers (1,4,1), each

divided by 48, will appear in the final result.

Both error estimates in the two illustrative examples are combinations

of ordinary fourth order finite differences. So, if the integrands in the

subintervals have small variation, the individual errors, and also the sum
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sum of their absolute values over the stihintervals, oan be expected to

diminish with some rapidity as the subintervals are halved. In the

instance of the second example, however, cancellation between the thr, e

finite difference, nay indicate an error appreciably less than actual -nd

allow acceptance of an incorrect result. This may seem very improbable

but the writer's experience suggests that, when it comes to errors,

Murphy's law always should be remembered.

The Newton-Cotes formulas with their even spacing often have a

desirable simplicity in some applications of numerical integration. They

are, as is well Known, imuch less powerful than those of the Gaussian

kind. The calculation of the lag function, though not awe inspiring

by today's standards, is still large enough to warrant using Gaussian

quadritures.

The principle, whose validity was established in two instances with

quadratures of the Newton-Cotes kind also holds for the Gaussian, the

Radau, the Lobatto quadratures and others, but because of the uneven

spacing, of their abscissas, ordinary finite differences must be replaced

by divided. Divided differences do not yield so readily to manipulation.

A proof of general validity must be found.

One illustrative example tells in essence the whole story. Suppose

the two quadratures are the two term and the three term Gaussian

quadratures on the same interval. Let the two quadratures be represented

by the quantities

C 1y + c 3 Y3

and
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CoY) + c2Y.2 + cy

where the c's are weights and the y's ordinates. Consider their difference

COy() - cVYl + C.v 2 - C 3Y- + C4y 4

The two term Gaussian gives the exact value of the integral of any polynoimial

of third degree, the three term Gaussian, of any polynomial of the fifth

degree. Let the polynomials be the first four powers of x, namely, 1, x,

x2 and x 3 . Both formulas give the exact value of the integrals for these

powers of x. When each power is used in succession to supply values for the

ordinates in the difference, one obtains a system of four homogeneous

equations in the c's:

4
, c x k = , k / , , . ,

. J

j =0

The rank of the matrix of the system is three. Therefore, a solution of

the four-equation system exists, other than c c = C2 =C 3 c= c. Any

constant multiple of this solution is also a solution. The fourth order

finite difference on the five points (x,Yo), (xl,vy ) , (x,) , x,\ v

and (x,Y) is also a linear combination of ordinates and also must vanish

for the four powers of x. In view of the generality of this last proof of

the principle stated above, it must be true for any two quadrature

formulas.
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A Succession of Exatanatory Algorithms Preiminar

to the Working Alzorithms

Although the senior author, over the years, has formulated a number of

algorithms for expression and calculation in the language of FORTRAN, he has

never written a program in the language, only through the services of an

intermediary. Illiteracy in FORTRAN and, for that matter, all computer

languages persisted until the appearance of JOSS*, a language so obvious

and consistent in terminology and forms that to Learn it is a negligible

task and to write a program in it, a pleasure.

In the case of the lag function, several algorithms for approximating

its definite integrals were written in JOSS and checked for faults. All

use basic Gaussian quadratures: one of two terms, one of three, and one

of four. The K-th abscissa of the quadrature of J terms is represented

by D(J,K) and the K-th weight by C(P,K). For the interval (0,I), the values

of the C's are:

C(2,1) = .5 C(2,2) = C(2,1)

C(3,1) = .2777 ... C(3,2) = .444
C(3,3) = C(3,1)

C(4,2) = .326072577431273 C(4,1) = .173927422568727
C(4,3) = C(4,2) C(4,4) = C(4,1)

and the values of the D's are:

)(2,1) = .5 - 3/6 , D(2,2) = I - D(2,1)

D(3,L) = .112701665379258 , D(3,2) = .5
D(3,3) = I - D(3,1)

D(4,1) = .069431844202973 , D(4,2) = .33009478207572
D(4,3) = I - D(4,2) , 0(4,4) = 1 - (4,1)

*An acronym for "Johnniac Open Shop System".
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The f i rst of the exp lanatory algorithms, exp anatory with regard to 1OSS

and to the working al-orithms, follows:

Algorithm I*

1.12 Set II = - A
1.18 Set j = 1
1.3 Set V(J) = 0
1.3 Set K = 0
1.4 Set , = J + 1
1.42 Set V(J) = 0
1.5 Set K = K + 1
1.52 Set X = A + D(J,K)*H
1.56 Set V(J) = V(J) + V(J,%)*I*F(X)
1.58 To Step 1.48 if K < J

.6 2 To Step 1.94 if WiV) - '(J-I) I < K

1.64 To Step 1.38 if J < 4
1.94 Type V(J).

This program, which is capable of approximating the definite integral

of F(X) on the interval (A,B), exhibits several essential characteristics

of the JOSS language: Programs are written in parts, where a part is similar

to a FORTRAN subroutine with a return. A part is made up of a succession of

numbered commands. The number on a command is the sum of in integer, which

does not differ for commands from the same part and a deci',nal fraction.

The commands are grammatical to the extent that the first letter of the first

word, always a verb in the imperative mood*, is capitalized and the end of

the command is signaled by a period.

The flow of the program is casiLy grasped. The body of the pro:.,ram

implements the three quadratures One by one in a cVclical fashion. Thw

quantity E in Step 1.62 specifies an iittowable error and, harring the

See Appendix A for FORTRAN equivalent.

The verb "go" in Step ; 1.58, 1.62 and 1.04.
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unusual, if V(J) is accepted for J = 2, 3 or 4, the error in the approximation

obtained is presumably less than or equal to E. If V(2) is accepted, it

follows, because Step 1.3 sets V(1) to zero, that the approximation is less

than E.

When V(4) is not accepted by Step 1.62, the control is not sent to

Step 1.38, but passes on to Step 1.94 for a print out. Inasmuch as the

quadrature of four terms yields the correct result for a polynomial

integrand of the seventh degree, the small pro-gram may well be adequate

for the integrands it will be called on to evaluate. After all, the

interands it needs to approximate do not necessarily behave in an outrageons

fashion . To cover the contingency that somhe will he difficult, the small

program is so modified in Algorithm 2 (which follows) that if V(4) is not

accepted, the interval (A,B) is halved and each half attacked separately.

If the interval of integration is to be halved and rehalved, there are

many ways to go about it. One way is presented in the following al,.orithm:

Algorithm 2*

1.1 Set 0 = 1
1.12 Set 1(0) = B - A

1.14 Set U(0) = A

1. 16 Set S = 0

1.13 Set J = I
1.3 Set V(J) = 0
1.38 Set J = J + I
1.4 Set K = )

1.42 Set V(J) = 0
1.5 Set V = K + 1

1.52 Set X = t(;) + D(J,K)*(u)
1.56 Set V(J) = V(J) + C(-,K)*qI(O)*F(X)
1.58 To Step 1.5 if K < J

1.62 To Step 1.18 if jV(I) - V(J-I) < E

1.64 To Step 1.38 if .1 < 4

*See Appendix A for FORTRAN (qIii valent.
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l.b6 11(o) = H(0)/2
1.68 Set 0 = 0 + I
1.7 Set H(0) = J(0-1)
1.72 Set U(0) = U((0-1) + 1(0)
1.76 To Step 1.18
1.84 Set S = S + V(J)
1.86 To Step 1.94 if 0 = I
1.88 Set 0 = 0 - 1

1.9 To Step 1.18
1.94 Type S.

In subdividing an interval, the symbol 0 is introduced whose largrest

value at any time is equal to the number of intervals available to the

algorithm for processing. All intervals are tagged with an O-value. At

the beginning there is only one interval, [ ,B]. So 0 = 1. If the three

quadratures are unable to reach an acceptable result on this interval, it

is divided into two equal parts, the part nearest B is given the valne

0 = 1, the other part retains the value 1. The attack shifts to the

interval with 0 = 1. If the attack is successful, the attack moves to

0 = 1. If unsuccessful, 0 = 2 is divided and the two part, tagged with

the cardinal numbers 0 = 2 and 0 = 3. Always the interval with the

highest 0-value is the one in process until ultimately iuccess comes to

the interval 0 = 1.

Algorithm 2, it will be noticed, is flawed with respect to the control

of error. Subdivision of intervals leads to an accumulation of error that

may exceed the value of E specified in Step 1.62. Although the algorithm

can be mzodified so as to insure an error less than E, the simplest and a

likely adequate modification is a carefully chosen decrease in the value

of E, particularly in view of the fact that there are a number of other

sources of error to protect against on the way to the value of B(k).

The second algorithm will now he used to illustrate the conv.rs;ion

of an integration in one dimension to an iterated integral in two

dimensions.

A
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A Lgorithm 3

1.1 Set 0(L) = I
1.12 Set !i[ ,0(1)] = B(1) - a(1)
1.14 Set UL,0(1)1 = A(l)
1.16 Set S(L) = 0
1.L8 Set J([) = I

1.3 Set V[I,J(I)] = 10
1.38 Set J([) = J(1) + 1
1.4 Set K(I) = 0
1.42 Set V1I,J(t)] = 0
1.5 Set K(i) = K(I) + 1
1.52 Set X(1) = UII,0(1)] + D[J(1),K(l)]*H[l,0(1)j

1.54 Do Part 2 for I = 2 if I 1
1.56 Set V[i,J(1)] = Vi,J(1)] + C[J(l),K(l)]*iI[l,0(1*G(1)

1.58 To Step 1.5 if K(1) < J(i)

1.62 To Step 1.84 if IV[I,J(i)] - V[I,.J(Il) - II I  < E([)

1.64 To Step 1.38 if J(1) < 4
1.66 Set 1i[1,0(1)1 = H[,O(1)1/2

1.68 Set 0(1) = 0(l) + 1
1.7 Set 1[1,0(1)] = H[I,O(I) - 1]
1.72 Set U[I,0(1)] = U[1,0(1) - 1] + H[I1,0(1)]
1.76 To Step 1.18
1.84 Set S(1) = S(1) + v[i,J(i)]

1.86 To Step 1.94 if 0(1) = I
1.88 Set 0(I) = 0(1) - 1

1.9 To Step 1.18
1.94 Type S(1) if I = I

2.3 Do Part 1

2.7 Set I = I

Except for the index I, the last alAorithm and the preceding one are

identical for the first 11 steps. Step 1.54 has no counterpart. The

counterpart, if it existed, would fall between Steps 11 and 12. Step 12

and those following closely parallel Step 1.56 and following. The function

G(M) of Step 1.56 is defined by the relations

[S(2) , it I =

F[X(1),X(2)] if I = "

*See Appendix A for FORTRAN equivalent.
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The value of G(M) for I= 2, identifies the iterated interal as e

13(1) 13(2)

J dx F(x,v) dy

A() ,A(2)

It helps in understanding the two-dimensional al .,orithm to cal . to i J

the principles of the iterated integral. As an example, take the iterated

integral displayed above. The last integration is a definite integril %¢ith

respect to x having as its integrand the result of a definite integral with

respect to y the latter having F(x,v) as an inte rand with x treated ;as a

constant. If the steps in the algorithm are examined carefulLy, it is seen

that the algorithm in its own way follows the same path. The algorithn starts

with a quadrature with respect to x, or rather X(1). The first abscissa is

the first abscissa of the two-point Gaussian quadrature. But G(I) in

Step 1.56 requires S(2), which is the result of a quadrature with respect to

y tor X(2)] with the integrand F[X(t),X(2)] , the variable X(1) being held

constant . Hence, the quadrature with respect to X(1) must be temporarilv

abandoned. This is accomplished by Step 1.54 which sends the control ta

Part 2 with I = 2. The first step of Part 2, Step 2.3, sends the control

back to Part 1, i.e., Step I1. The quadrature with respect to X(2) then

be, i:is and continues without interruption until completed. Control then

return, to Step 2.7, which sets I = 1, completing Part 2. Control returns

to Step 1.56 with the required values of S(2) now available,. lenco the

quadrature with respect to X(l) can contiue nti shortly Stop 1.54 is

encountered a;a in, ind so on.

E( 1) and '(2) should not he given the same v:iliuo because the int,-r ini

for the X( 1)-quadriture has a component from the X( 1 )-qu.idritur. ind ,,)

many have a scatter is large as E(2). Finite dit tertnL'ces Ire well knowii
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for their sensitivity to scatter. Consequently, the programmed check for the

X( 1)-quadrature tends to magnify the apparent estimate, making acceptance

difficult, or even impossible. Fxperience indicates that H(1) and F(2) should

satisfy the relation,

FM) < E(2')/lc)

The ALd orithyn for the__integ ral

$Sin 21kt -1 it jrsin '2k0
2 Wqt- d

T'ie se cond integral in the definition of B(k) , unlike the first, is free

of -;uch nuLisances AS discontinUities in itS integrand and, if one selects

Sin 2kt 1 sin 2!q 2 fo-.te Orcmnnsofe2jk(q 2_t 2) asthe trigonometric

faictor, one has the simnplest of the eig~ht that aire implicit in 11(k)' s

dtefinition. Tie quantity Sin 2Kx 2vanishies when x~ = ;,/(2k) and

nI =, ,. .. hence the area of integration is divided into rectangular

sub-areas bythe linie-

where p) /(2k), ni =(,1,2,... ind m 1),1 ,...The integration over the

infi-iite strip is accomiplished in a piecewise fashion. Starting with the

re-ctang Ic common to the first row and first coluimn, the cal culiat ion proceeds'

rectan ,Je-hy-rectangrle along the row until aI sui tihe tes;t indic ates the

remainder for the infinite alternating series is sufficiently small. The

next row is then ,iven the some treatment and finally the finite series of
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sums is summed to give the value of the sin 2kt- sin 2kq component of the

second integral. The steps in the a1gorithm, their explanation delayed,

follow.

t.1 Set p = 7/(2*k)
1.16 Set N(2) = 1

1.18 Set A(2) = 0
1.2 Set NO) = 1
1.22 Set A(1) = 0
1.24 Set T[N(2)] = 0
1.26 Set B(2) = sqrt[N(2)*p]

1.28 To Step 1.32 if B(2) < 1

1.3 B(2) = 1
1.32 Set B(1) = sqrt[N(1)*p]
1.38 Do Part 2 for I = 1
1.42 Set TLN(2)] = T[N(2)] + S(1)
1.44 To Step 1.56 if N(1) < i(1)

1.46 To Step 1.56 if [S(I)j > E(3)

1.48 To Step 1.56 if s*S([) > 0

1.5 Set Z(1) = Z() + 1
1.52 To Step 1.66 if Z([) > i(1)
1.54 To Step 1.58

1.56 Set Z(1) = 0

1.58 Set s = S()

1.60 Set A(1) =  ()
1.62 Set NO) = N() + 1
1.64 To Step 1.32

1.66 To Step 1.88 if B(2) = 1

1.68 To Step 1.8 if N(2) < i(2)

1.7 To Step 1.8 if IT[N(2)] I > E(3)
1.72 To Step 1.8 if T[N(2)]*T[N(2) - 1] > (0

1.74 Set Z(2) = Z(2) + 1
1.76 To Step 1.88 if Z(2) > i(2)

1.78 To Step 1.82

1.8 Set Z(2) = 1
1.82 Set A(2) = 8(2)
1.84 Set N(2) = N(2) + I
1.86 To Step 1.2
1.88 Print output

2.1 Set 0() = I

2.12 Set [I,O(I)] = B(1) - A( )

2.14 Set C 1,O(1) = A= )
2.16 Set S(1) = 0
2.18 Set ,() = 1
2.3 Set Vtl,J(1)1 = 0
2.38 Set 3(1) = () + I



-21- 7 larch 1)51

2.4 Set K(l) 
2.42 Set VI 1 ,1( 1))
2.5 Set K(I) = K() f i
2.)2 Set K( 1) = U[,t)] [)(L),K(1)e111,15()1

2.54 Do Part 3 for I 2 if I t
2.5o Set VIi( )1 [ [,J(l)1 + CIJ(1),KI )II I,(I)1K;, I)
_ 58 To Sttep 2.5 i K(1) < I(1)

TO Step 2.:i4 ii 1,,(1) - VIll([) - i A ()
2 b6 Set !LI[ I ) I lit I,()( 1 /2

2.o8 Set A(I) =  1(I) + I
2.7 Set Ht ,1 0( 11 !itI ,( ) -L I
2.72 Set Lit, 0)(1 1 (,,( -L 1 + lI1LC(O
2.76 To Step 2.1,i
92.8 Set S(1) = S() + VI,,I .(1)I
2.86 )Done it J(1) = I
2.88 Set o(1) = IL) - I
2.9 To Step 2.1P-

3.3 Do Patrt 2
3.7 1 = I

nputs tor the ,i I ith n ir I ,)I etMr , , the , i. ,ht I od inc i s

for the three Gaus itn quadr i tiei , .1(md tile critical La qnti tis i, F() aud

E(I) . In addition, there is a third critical qu.ntitv, !.( 3), anod t-e

critical inteo,ers 1 1) and i(2). their roLes are nade ch.ar in fit.

fot Lowi.4 explnat Iin of I :ill f tie the ol[,orithm.

Part 2 carries the main body of the computAtion and catn he .1 ii t t he

served by Parts I ard 3. Steps pr i)r to Sto p I . 3, pre pare th'e a :) r

Part 2 , Step 1.3, initi ites the covnlptations of tart 2 aLd, 'tn rl't 2

!as fin isiled 'i till A rCoetan ?le , steps sUbseq tienit to Stop I. 38 stLhe te

resuIl t , elect tte next rectan, le , if inotier is required, and t ikc Cey

the tnct ions ot st"e or the steps prior to Stop 1. 38.

The qant ities %(l) and N1( in Steps . I') and I .13 Cr; def i:Ied hV

statiG that tile tm:ther pai r I),\12)1 are tle r,_Iercne nuilibers i or

tIle rert I I , (")-m: the N )th clIin mI d (2) ti rw.

T[ (2) of Stop I .2' iU tle rtniCnC , t)t, I l olit,, rct ,1,1,',- v-

rect.m l, It, alinp the (2) t row.
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Steps 1.44 througih 1.56 express properties of convcr'relLt 4 tr matin,

sories. It will he reca ILed that whteni a, se es r ,iches a trp, after

which it is strictly atterunatini and the -maslnitude of each t-rm is less

than the preced inc term, then the magnitode of tile l,ist term calcuiited

is a bound on tile renlainder. The (pant ity /( 1) in Steps 1.5, 1.52 and

I.5b is a count ot the number of times in succession the terms fron a

row have met these conditions. Step 1.44 does not allow the count to

start until N( ) reaches a value thoutg.ht to be large enough to ake

acceptance by happenstance unlikel y. The character of the inte-rand

insures that such a value exi.sts. Sten 1.4h returns the count to zero,

whenever 8(l), the manitude of tile ';(1)
t h 

term, is not less than ,i!O

appropriately chosen critic;il quantity. Step 1.48 sets the count to

zero, if two successive terms (s is the value of the preceding tern)

are of the sane sizn. Whei? the cLnt s;ucceeds in reaching a value

greater than the integer i( ), also used in Step 1.44' , tile process

is presumed to have siown th it furt her quinalog of tle series is

unnecessary and control pauses to St,e, I If, however, the colnt

does not exce,,d !(1), Step I.54 n ; soo, t:e CLt r to Steps 1.58

throug-1h 1.,14 i: Weich the tir-l three tps .ire partial preparation

fir the :it ret, C i- t !e r he I re. Step I .+4 passes the control

t ;t,.p 1.12, Ihr. th, prparit n,

* h.'i m ! ,, i iiii . :,,a ,rim,. i ',. ii ie lou Id h l e u-,,d , tlm r,,
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The A,\,orithin for the cos lkt 2 cos 2kq 2 Component oi the 'Second Lnte ral

Because cos 2kx 2 vanishes for x !T/', 3 ', 5 if ... , the width of

the first row and ;ilso the first column is si!(4K ,nd tile lines sUbdividin,

the area or into-rition are

t = (2u-I )*p

and

(4 -- (2n-l1)*p ,

,here p = 7/(4*k), (2n-i) = 1,3,5. nd (2 -) 1,3,5.

Only ,a few steps in the algorithm for the sin 2kt sin skq component

chan,4e. The steps are:

1.1 Set p =.i(4*k)
1.26 Set 3(2) = sort [2"N(2) - l)*pl
1.32 Set B(I) = sqrt [(2*N() - 1

The .\l orithm for the sin 2kt cos -,kq- Component of the Second interai

For this component the width of thle first column is 7/(2k) and of tile

first row T/(4k). Two p-values are needed

p(I) = /(2*k)

Ind

p(2) =  'T/(4*k)

lence

1.1 Set p(M) = ",/(2*k)
1.12 Set p(2) =  T/(4*k)
1.26 Set B(2) = sort [(2*N(2) - l)*p(2)]
1.32 Set BK) = sqrt [N(l)*p(1)j
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The Al.ri thn for thle Cos 2kt z siln 2k12 Compolent ot the Second lnt egrli

In this case

p( ) = :r/(4k) ,

and

p(2)= /2)

1.1 Set p(I) 4*K)
1.12 Set )(2) =  r/'(2*k)
1._1 Set B(2) = sqrt [N(2)*p(2)]
1.32 Set B(1) = sqrt [(2*N(1) - 1)(M

'Fie Algri thins _f)r the Firs t I yt2"r i

Tle first iTte, raI differs from the second in its area of integra t ,oi

and its inte'rind. The area ot interat ion of thLe f)-er is a strip in the

t-d1 rection witi 1 7i nite oundarv at t I . The area of integ ration of the

latter is the samne e'<cept that the finite boundary is at t . This

di f ference is of no great consequence.

The difference in the integrands is a little more significant. The

first integral has the quantities vt - I and q - t in its integrand, the

second, the quantitites t + I and q + t.

The in f i nte sigu lari ty oriinat ing in t - i is int erale and

readi ly handled by means of quad rature formulas for the weeight function

The singularity caused by q - t is not integrab Le, hut it appears [n

the corner )t the area of integration, where q = t = I and where the

a nanu tit' v ,(1 - q ) vanishes. The improper double integral can be shown

t' ,':ist ho c%. paring it with the improper double integral obtained b

replaeia' the trigonomttric factor bv unity. The sinaularitv is no prohl,,ai

numericailly, thmgh it does slow the evaluation.
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The changes necessary' to convert Algorithias t )r the secolld i-Cte:1 rlI

into those for the first are few. I the case where the tri-onometric

factor is sin 2kt -in 2kq they are:

I.I2 Set n = first [i 1(1)12 : i*p > 1

1.2 Set N(I) = 1

2.51 ro Step 2.53 if I I and j1,o(1)l =

2.)5 To Step 2.54
2.53 Set K(I) = U[I ,0()1 + d[J( I),K( I)I I I'(l)}

2.55 To Step 2.57 if I I and IIu(1)]
.56 To Step 2o5l

2.57 Set V[I ,J(1)1 = I,.](11 ),.( ) s trt HII,)(l) I " (()

The ri ght-hand member of Step 1.12 is :i !afuotion or i that finis the

first of a sequence of values of i that Ieets the prescribed condition.

In this case, the sequence is = 1,2,3,.... ltv) and the prescribed condition

is that p * i De c'reator than unity. The value of n for each value of k

can, of course, be found by a brief calculation and treated as an inAput.

One can, however, elect to write a small subrout ine equivalent to the

'unction of Step 1.12.

File steps added to Part 2, it will he seen, provide an alternative to

Gaussian quadritures whenever I I and Uf[1,O(1)] = 1. The alternative is

a Gaussian quadrature for the weiht funct ion I The lower case

sy:nbols, c and d, are respectively the weights and abscissas corresponding

to the Latter weight function on the interval [;,I]. They are derivable

from the weight and abscissas for w(x) = I in the interval (-1,1). See

Appendix B.

The chanres necessary to convert the remaining three algorithins for

the second integrrai into those for the first inteogral differ very littl.e

from those ahove.
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The steps added to Part 2 are still needed to take care or the

singularity at t = 1 and must, of course, be retained. The on v step that

changes in Part I is Step 1.12. For the factors sin 2kt -, cos 2kq-, one

has .12 n = first Ii 1(1)100 : i*p(I) > I. Th, only change is the

unit index, or subscript, for p. For the factors cos Zkt , cos 2kq and

'0 )
eos 2~k, sin 2kq- the step defining n becomes

1.2 n = first [i = I(1) )d: (2*i - I)*p(i I) > .

Step I . 12 now reads n the first value of i in the sequoncy

i =,2,3,..., u) such that (2*i - I)*p(I) > 1 and n 1,3,5 .... ,99.

The comiplete FORTRAN pro gram t or computiln, the la; tunc t ion is

presented in Appendix C.

• I n lm I II I .. . . . .__
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Appendix A: FORTRAN Algorithms

The following algorithms are the FORTRAN coded equivalents of the first

three algorithms appearing in the text. Statement numbers occurring in the

text have been retained, where possible, to facilitate easy following of the

logical path of the programs.

Algorithm 3 has been written as two subroutines. The first performs

the "outer" iteration which depends on the value returned by the second or

"inner" iteratioa. The subroutines would, in practice, be called by a main

program which passes the values of the "outer" limits of integration [A,B],

the "inner" limits [A2,B21 and a parameter R (if needed for the evaluation of

F(X,Y,R)l. The result of the double integration is the variable S returned

to the main program.
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ALGORIThM 1: 2, 3, 4 POINT GAUSSIAN QUADRATURE ON FULL INTERVAL [A, B]

PROGRA.M GAUSS I
IMPLICIT RE-:AL-:8(A-HO-Z)
DIMENSIONl C4t4)vD(4v4),V(t)
DATA E/.0002/YA/O.O193/3.14.159265/,C(2,t)/.530/,D( 3,2)/.500/
DATA C(3, 1)/.277777777777777D0/,-(4, 1)/.O69L43184420297300/
DATA C(3.2)/.44 z,44t44LtzrDO/,C(4,2)/.325O7257743I273DO/
DATA C('ty)/.173927422558727DO/,D(3,I)/.11270166537925s0O/
DATA OU4,2)/.330OO9478207572OO/, IPR/3/
F (X)=DSIN(X)
C (2,2 )C( 2,1)
C (3,3)=C (3,1)
C (4,3)=C(z42)

D(2,I)=.500-DrSQRT(3.ODO)/6.0DO

D(3,3)=1.OO-6(3,1)
D(4,3)=1.OO0D(p,2)

H=B-A
V Cl) =0.000
DO 5 J=2v4i
V ( J )0.000
00 7 K=1,J
X=A.D (J ,Kp)-

7 V(J)=V(J)'C (J,K):TH;'F(X)
IF(DABS(V(J)-V(J-1)).LE.E) GO TO 13

5 CON1TINUE
13 WRITE(IPR,1) JvV(J)

I FORMAT(12,2XrE16.8)
STOP
END,
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ALGORITF-4 2: 2, 3, 4 POINT GAUSSIAN QUADBATURE WITH SUBDIVISION OF INTERVAL [,~

PROGRAM GAUSS2
IMPLICIT RE :AL::-3(A-1H4,0-Z)
DIMENSION C(4,4)tD{4t4),V('t),H(10) ,U(1O)
DATA E/.OCO2/,4/O.O/t3/3.14159265/,C(2,1)/.5DO/,D( 3,2)/.500/
DATA C(3,1)/.27777777777777700/,O(4,1)/.069431844202973D0/
DATA CC 3,2)/.4444'44't4444400/,C (4,2 )/.32607257743L27300/
DATA C(t, 1)/.17392742256872700/,D(3,1)/.11270166537925800/
DATA D(4,2)/.330009478207572D0/,IPR/3/
F(X)=DSIN(X)
C(2,2)=C2,.)
C (3,3)=CC3,1)
C (4,3)7ZC(4v2)
C (4,)=C(4, 1)
DC2,1)=.500-DSQRT(3.OOV/6.ODO

DC 3,3 )=1. 000-0(3, 1.)
D(4,3)zl.ODO-D( 4t2)

N=l
H (N)=B-A
U(N)=A
5=0.000

5 V(1)0O.OD0
DO 7 J=2,4
V(Ji)0O.ODO
DO 10 K=1,J
X=U (N) *D (J ,K)rH (,N)

IF(DABSCV(J)-V(J-1))-LE.E) GO TO 21
7 CONTINUE

H(N)=H(N)/2.0
N=N. I
H (N) =H CN- 1)
U (%.)=U CN- 1)-*H(N)
GO TO 5

21 S=S4*V(J)
IFCN1.EQ.1) GO TO 25
N N-I
GO TO 5

25 WRITE(IPR,l) J,S
I FORMATCIZZXE16.8)

STOP
END
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ALGORITIL~l 3: TWO DIMENSIONAL.1 2, 3. 4. POINT GAUSSIAN QUADRATURE WITH
SUBDIVISION OF INTERVAL [A,b-]

SUBROUTINE GAUSSA( A, BA2 , 2,R .S)
IMPLICIT REAL-,-8(A-HtO-Z)
DIMENSION C(4,4) ?D(4v4)vV(4)vH(1O)VU(1O)
DATA E/..000200/,C( 2, 1)/.5D0/,D(3,2 )/.5D0/
DATA C(3,1)/.277777777777777DOI,O(4,1l)/..o6943184420297300/
DATA C(392)/.444444444444444DO/,C(4,2)/.326O72577431273DO/
DATA C(4, 1)/.1739Z74225b8727DO/,D(3,1)/.1127165379258D0/
DATA D(4v2)/.330009't782O7572DO/, IPR/3/
F(XY9R)!Y; DSIN(X)
C (2,2)=C(2,1)
C (3,3)=C(3v1)
C (4,3)=C(4v2)
C (494)=C (41)
D(2q1)=.5DO-DSQRT(3.OD0)/6.O0O
D(2,2)-1.ODO--D(2,1)

D(4,3 )1.ODO-D(4,2)
D (4,4 )= .0D0-D(4,l)
N= 1

HN)=B-A
U(N)=A
S=0.00D0

118 V(1)=0..O0O
DO 138 J=2v4
V(J)0O.ODO
DO 150 K=1,J

CALL Gl (Xq, ,A2182v R)
150 V(J)=V( J) +C (J.K)H(N)::-F(XYR)

IF(DABS(V(J)-V(J-1)).LE.E) GO TO 184
138 CONTINUE

H(N)=H(N)/2.ODO
N=N+1
H (N)=H( N-I)
U (N)=U (N-i ) +H(N)
GO TO 118

184 S=S+V(J)
IF(N.EQ.1) GO TO 194
N =N-1
GO TO 118

194 RETURN
END
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ALGORITIM 3: TWO DIMENSIONAL 2, 3, 4 POINT GAUSSIAN QUADRATURE WITH
SUBDIVISION OF INTERVAL [A,B] - continuation

SUBROUTINE GI(YvSlAv8,R)
IMPLICIT REAL*3(A-HvO-Z)
DIMENSION C(4v4)90(4v4)gV(4)vH(1O)qUC 10)
DATA E/.OoOZOO/,C (Z,1)/.500/,D(3,2)/.500/
DATA C(3,1)/.27'7777777777777D0/,0(4,l)/.069431S4420297300/
DATA C(3,t2)/.444444'44444444400/rC (4,2)/.32607257743127300/
DATA C(4, 1)/-17392742256872700/,D(3,1)/.1127O1bb5379258D0/
DATA O(4,2)/..33000947820757200/,IPR/3/
F(XrYtR):DSIN(X)
C (21,2 P(2, 1)
C(313)=C(3vl)
C (4,3)PC (4,2)
C (494) C(4, 1)
0(2,1 p.500-OSORT (3.000) /6.000
D(2,2P=1.00OD(2vl)

D (4,3 p 1.000-0(4, 2)
O ('t4)=1.O0O-O(4v~1)

H(N)=B-A
U (N) =A
5=0. 000

118 V(1)0.O00~
DO 138 J=2,4
V(J p0.000
DO 150 K=1,J
X=U(N)*D(JvKP-;H(N)

150 V (1)=V( J) *C (JK )-H(N) *F (X ,YR)
IF(OABS(V(J)-V(J-1)).LE.E) GO TO 184

138 CONTINUE
H(N)PH(N)/2.000
N=N~
H{Np=H(N-1)
131N)=U(IN- 1)+.H (N)
GO TO 118

184 S=S#V(J)
IF(N-EQ.1) GO TO 194
N=N-1
GO TO 118

194 RETURN
END
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Appendix B: Two Sets of Gaussian Weights and Abscis'a-

INTERVAL = [0,11 WE[GHtT FUNCTION = 1

.5 .21132 48654 05187

.5 .78867 51345 94813

n=3

.27777 77777 77778 .11270 16653 79258

.44444 '44444 44444 .5
C3 = CL .88729 83346 20742

n=4

.17392 74225 68727 .06943 84420 29730

.32607 25774 31273 .33000 94782 07572
C3 = C2  .66999 95217 92428

C4 = C1  .93056 81557 97027

n=5

.11846 34425 28095 .04691 00770 30668

.23931 43352 49683 .23076 53449 47159

.28444 44444 44444 .5

C4 = C2  .76923 46550 52341

C5 = CL .95308 99229 69332

n=6

.08566 22461 89585 .03376 52428 98424

.18038 07865 24070 .16939 53067 66867

.23395 69672 86345 .38069 04069 58401
C4 = C3  .61930 95930 41599
C5 = C2  .83060 46932 33133
C6 = C1  .96623 47571 )1576

Li
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INTERVAL = [0,11 WEIGHT FUNCTiON =I/

XiW

n=2

.11558 71099 97048 1.3042 90)309 72509

.74155 57471 45810 .69570 96902 74908

n=3

.05693 11596 70074 .93582 78691 45382

.43719 78527 51095 .72132 3146) 96278

.86908 43784 32472 .34264 89847 58340

n=4

.03364 82680 67507 .72536 75667 56724

.27618 43138 72464 .62741 32917 55774

.63467 74762 34637 .44476 20689 06748

.92215 66084 92058 .20245 70725 80752

n=5

.02216 35688 07218 .59104 84494 29951

.18783 15676 52445 .53853 34386 19992

.46159 73614 96266 .43817 27250 31964

.74833 46283 87281 .29890 26983 01162

.94848 39262 28836 .13334 26886 17376

n=6

.01568 34066 07400 .49829 40916 26806

.13530 00116 55248 .46698 50730 76710

.33069 04069 58401 .40633 48534 46132

.61930 95930 41599 .32013 66570 86692

.81742 80132 66875 .21387 96519 9063b

.96346 12963 70913 .09435 ;'6727 73024
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Appendix C: lmplementation of ,\lgorithms for Cormputing the Lag Function

The following example is an adaptation of the preceding algorithns

applied to the computation of the lag function. Implementation follows

directly from that outlined in the main body of this manuscript. The few

exceptions are clarified in the following otitline.

I. MAIN PROGRAM: For each value of R (R=k), eight double integrals are

evaluated. The real and imaginary parts (SRL, SIM respectively) are the suns

of the corresponding contributions iSUM( I) of the appropriate integrals. No

output statements are supplied as the relevant data are subject to user

discretion.

For efficiency and economy, the q interval [0,1] was held constant in the

main program since the q algorithm provides for subdivision of the interval

when necessary. Im light of this, a six-point formula was used which is

theoretically exact for polynomials of order eleven or less. For the rma'zoi'ne

value of k used (10.0), the number of nodes on the interval [0,11 is less than

eleven.

T(M) and T(2) are the n and (n-I) partial sums of the alternating ; ,ris.

When the series is terminated, they provide an upper and lower bound o7 the

solution. T(3) is the midpoint and is accepted as the correct result. T(4)

and T(5) are summations of the total estimated errors in the t and i

integration respectively.

E([NT) is used as a pseudo relative error bound on the nth partial ;um.

When the contribution t, T( 1) is less than E( INT) or some predetormind value

(.0001 in this case), the summation of the alternating series terminates.
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11. SUBROUTLNES:

(a) GAUSSI, GAUSS2 - These perform the quadratures for t and q respectively.

The weights and abscissas for each type of quadrature are initialized in

GAUSSI and passed to GAUSS2 in the argument list of the CALL statement. These

subroutines are the FORTRAN equivalents of the last algorithm in the text

which uses a relative error bound. Variables not appearing in the algorithm

are explained as follows.

JJ(N) saves the value of the order of the last quadrature accepted. This

prevents duplication of effort in recalculating lower order quadratures

previously computed and accepted by GAUSSI and GAUSS2.

SV(N) saves the contribution of the Nt
h 

subinterval which is added to the

total sum at Step 100 should the condition at Step 200 be met.

RQI is the estimated error in the q-integration for a specific value of

t. TEQ is the sum of the estimated q error in the entire t interval just

computed.

(b) PVAL - Calculates the factor used to determine the zerofes o the sin or

cos argument for the boundaries of the subintervals on the infinite t range.

(c) LVAL - Determines the integer :-ultiplier for the first upper linit in t

when the lower limit = 1.0.

(d) ALV - Sets the lower limit on the t interval to 0).') or 1.0) depending; on

which integral is being evaluated.

(e) BIV - Calculates the next node point on the t interval.

(f) FT/FQ - Evaluates the function at A specific abscissa in the appra)pri t,

t/q quadriture.



T P L IC IT REAL: (--Z
r) l'i- "EN S I 3jN T (5) , S!,-( 3) E (~),R

CO"MON' Al ,3 1, A2 tB2 .;, 711T

DATA RR .5,.-- 1 2.b 0 1 .) 2 .,

DO 8 00 NIZ = 1 ,
P -R R (NR

C0 900 INT=1,8
SU4( IPT)O0.ODO
S=0 .000
A2=0.000

CALL PVAL (PlqP2 ,P )

CALL LVAL(P1,L)
I 1=L+4

CALL AIV
T (1) =0.0D
T (4)0.000

T (5) =0.000
B 2 =1 .0D0

132 CALL BlV(MP1)
CALL GAUSSI (SI, ET,EQ)
T (4)=T(4) .ET
T (5)=T( 5) -EQ
T( 2) =T ( 1 )
T(l) =T ( )--S 1
E(INT)=OMAX1(OABS(T(1P:'RE ),.10)3)
IF(M,%.LT.Il) GO TO 156
IF(DABS(Sl).GT.E(INT)) GO TO 156
IF(S*SL.GT.0.000) GO TO 156
Iz=IZ+1
IF( IZ-I1) 158,158,188

156 1Z0o
156 S=SI.

A 1 = 31
M=M~l
Go TO 132

188 T(3)=(T(1)+T(2) )/2.O00

E (INT )0AB5 (SI) /2.000
SUM(CINT )T (3)

900 CONTINUE
SRE=SUM(1P*SUM(2)+SU*(3)+SUM(4)
SIM=SUM(5)-SUM(6)*SUM(7h-SUM(3)

800 CONTINUE
STOP
END
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CIjDVA(J.N A - BA2 i ZR I

0 1 '4-iNS I ON C ( 6,65) iD ( -- P6b ) ,V (6 PH (150) U (150, 0(15 )3 5 (66 b S

[DATA C(2,1),C(?,2)/2:;.5-9/
DATA C(3,I) ,C(3,3) ,C(3,2)

>/2':'.2 777777777777773, .4444,(44444444444r0Q/
!OAT A C ( ' - I) ,C ( 4- ) t C (-, P2) I C 4 T ')

>/?r:.1739?742256372700, 2: . 325'0725771I.3127300/
D)ATA C(5, 1) ,C(5,5) ,C(5,2) ,C(5,4) ,C(5,3)

>/2*::1 1845344?5230952C0, 2,:.239314335249683D0,
> .23444444444444400/
DATA C(6,I) ,C(6,6) ,C(5,2)*C(699),C(693) ,C(6,4, )

>/2z:.35562246199535D-1, 2::.13C380736524070DO, 2:'.233?5bO6723563459D /

DATA D(2,1) 11)(2,2)
>/-211324865405187 100, .78R86751345943129D0/

DATA D(3,1) ,D(3,2) ,0(3-P3)
>/.11270166537925900? .590, .8872'93 33462074200/
DATA 0(4v1) ,0(4,2) ,0(4,3) ,9(4,4)

>/.694318442029739-1, .33000947320757290, .6699905217q2-2390,

> .93'--563155797C2700/
DATA 0(5,1) ,D(5,2) ,9(5,3) ,915L,) (5,5)

>/.45?I00770306630-1i .23076534491-715900, .5D0,
> .76:)23465505284100, .9530899229o933220/
DATA 061,(,)0S3 D64 D55 966

>/.337&,5242593424D-1, .16939530676686700, .3S05QO406958401DO,

> .6 1?30959304159"400, .83060469323313300, .9562347 57101576-D0/

DATA W(2.1) ,'W(2,2)

>/1.304290309725092D0, .69570969027490300/

D ATA W( 3?,1) 04 ( 3 -2) ,vW( 3 13)
>/.93532786914533200, .72152314609627800, . 342648934758340DO/

DATA W(4P 1) 9,',(4,P2) Pq(4,3) ,W(4,4)
>/.725367566756724D0, .62741329175577400, .4447623- 90574830,

> .20245707258075200/
DAT A w( 5, 1) ,W ( 5,92) 9W ( 5 v3) ,4 (5,-4) F'4 ( 5,5)

)/.59104 84491429950603, .5385334386 1999200, .438172725C3196400l,r
> .293902b9830 116290, . 133342693617376D0/

DATA W(6, 1 ) 1,4(62) 7ri(6,3) lv4(6v4) -4 (bv5) ,W(6,6)
>/.49829409162530600- .46693507307671000, .40633485344613290,

> .32015665708669200, .213878651990635D0, .943506727730240-1/
DATA Z(291) ,Z(2,2)
>/.1 15587109997047700, .741 555747145809900/

DATA Z(391) ,Z(3,2)9,Z(3,3)
>/-569391159670074D-1, .437197852751094600, .869034378432471500D/
DATA Z(4,1) ,Z(4,2) ,Z(4,3) ,Z(494)

>/.3364826806750692D-1, .276184313872464400, .63457747642346371l00t

> .922156603492058300/
DATA Z (5,1) , Z(5,2), Z(5,3) , Z(5,4) , 7(5,p5)

>/-22163568307217570-1, .137831 567652445300,

> .461597361496266200t .748334623 337281300, .9434939262383691C0/
DATA Z(6,1),Z(5,2) ,Z(6,3),Z(5,4).Z(6,5)IZ(5,6)

>/- 15633406607400470-19 .135300011655248100, .33069040695940100,l

> *619309593041599D0, .317428013266875200, .96345,1295,370912800l/
DATA RE/.50-3/,V( 1)/0.0000/
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SI Z

S V 1)=" '. 0 -:

1 0.Db 3

S) S=.0 OC

T = .) ( O

230 I F() .LE .E SO TO 100

I (NJJ-6) 30,30, 500
30~ D10 10 J=Njt6

E 01=0.000
Do 23 K~l j
X = U ( N ) +9 ( J T K )H(N)
GO TO (1 1 ,2, 2 1 9 1, 22 ',! T

2 CALL GAS2XY,,,Q
ECI=E01-EQ
GH T3(3v3,4,4t'3,3?4q4) ,IT

3 U(()E..3)GO TO 400
4 CALL FT(X,Y,Fx)

V ( J ) =V ( J ) +C ( J K ::H (.N) ;:Fx
GO TO 20

Z-0 0 CALL FT(XYGX)
V ( J )V ( J ) +'A ( J ,k K :D S PT ( Z i ) :: (N :QX

23 ON T I M J
S S (i)=V(J)
J J (IN) = 1 -
O(N) =DAS(SSCN'1)-SV(N))
1 :( :) N) -L E E ) GO3 TO0 10 0
S V ( N) = S S CN

1 0 CON14T I NUJE
500 H (N) H (N) /2.000

A= i .I
H( M) =H( N)
U ( 9)1=u(.\4) + H( N)

JJ (N)=2
JJ ( ") =2
SVi ( N) =0 .000
SV(M) =0.000
r,0 TO 200

100 S =S -SS(N)
S V(N)=S S(N)
TE=TE+O(Nq)
TE0=TE04PEQ1

IF(.N.LT.M-l) GO TO 200
IF(TPE.LE.RE-~osS(s)) GO TO 300

E=(T9E-RE-:0A9S(S) )/M4
GC TO 222

3 30 R ET U:ZN
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1P 2LI C IT R:- L 0-

D I E':s 10-11 C( , 6) 0 ) I r( ) * H( 151) ,'1) 15 0) (1

N= I

iJ (1I) =?
SV (1) =o.00

U ('I) A
222 S=0.000

TE=Q0D0
200 1 F(0( N).LE.) GO TO 100

NJ =J J ( N)
IP(,NJ-b) 30,30,500

301 .00 10 J=NJo6
V (J )z::0000
DO 20 K=LJ

CALL FO(XYIPX)

23 v ( j) V ( J)+C jq

JJ( N) =J+ I
Q (N) DABS (SS (N) -SV (N)

I~((N)LE.E)GO TO 100
S1V (N) =SS ( N)

10 CONTI PUE
500 H (N)=H( N)/12.O01r

M M1
H 4) =H N)
U(M)=UfN) .HU()

JJ(N) =2
JJ(YM) =2
SV(Nl) =0.000
SV(.M) =0.000
GO TO 200

100 S=S*SS(N)
SV(N)=SS(N)
TE=TFE4Q(N)
N:N4-1
IF (N.LT.M-1) GO TO 200
IP(T;E.LE.RE*OABS(S)) GO TO 300
N~ I
Ez(TE-RE*OA3S(S))/M
GO TO 222

20') RE TU9 N
E Wi)
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SUS--ROUTINE PVaL(~,>I

C ) 11 ,? .,23 ,4, -AI ): , i. T

I c>1 P 1/2 ODC,-7 z

PlzPl/(4.C0.0*R)

P 2 = P1 / ( *03

R ET !"R N

P2=P1/( 2.O0)C-R
R ETUR N

4 P 1 0 1/2 . D:R)
P2=01 / (4.00 C*R)
R ETUR N

SU3RCUTINE LVAL(P1,L)
IMPLICIT REAL*8 (A-HO-Z)
rCOimrON A 1 v31 -PA2,v 2 9R , 1NT
GO TO(1,2t3?3v29l1,3,3)-INT

1 D0 10 1=1,100)

I :(L::P1 CT . 1.ODD) R ETURN
10 CONT 1NUE

R ETUR N
2 .00 20 1=1,100

L =1

IF ((2*L-1 ) P 1.GT. 1 * 00) RETURN
20 C ONT INU E

R E TURN
3 L1l

RETURN

EN C
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S03.-DIuTINE AliA

Ir 0,N Al 93~ ?A ,2 1~ V)T
0OT 20 .,,,2,1 ),IN

A I0.0D20
QE T URN
I2 A l. 0 --'

SE T uR N
EN'

SU3ROUT INE B IV ( M,P1)
IM 0

DLICIT REAL::B(A-H,FV)-Z)
CO0MM O N A 1,281 , A2 , 3--2 9 vI N T
GO TO(l,Ztl,292,1,2,I),INT
31=DSQRT(M::P1)
C! ETUR N

2 ~1 =0QR T((2 -'P1
R ET JO RN
END)
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SUq-RQUITIN>- FT(XYvcX)

CO'AWPN Al I3l142 % ,tT

I F X = Y:S I N 2.0-C :::X S, /~YT I .0 0-I .OD0/)X)
P. E TU RIN

2 F X= Y*DC CS (2 0 0 0* :::X J /S' RT (I .0DJ -1 .0 D0/X
R E T UR N

3 F X = Y* S IM 2 .:-- :X-/S Q P T 10 90.A10 0 0X
R ETURN

4 F X= Y DC OS 2 0 DO R* X-: X)/,DSQ T I lC 'J) 10'0/ X

SUC3ROUTIE FO(XyirFX)
IMPLICIT REAL-:--(A-HiO-?)
C OM 'AON AI ,3 1,vA2,?3 2.R ?N T
GO TO(lv2v3?49l,29p3t4) ,NT

2 FX=DCOS(X*::X:2.ODO)~:DS' RT-( .0 O/X-1.OCO')/(1.00-uoY/x)

R ET U R N
3 F X =0CSN( R:- ::XX*2 .000 D S CPT (1. ODD/ X -I. O)/I .C o-.Y /x,

R ETURN
4 X=DC S( : Xe2.0D ORT(I.0C 1) 1.00
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